博客
关于我
【论文泛读72】具有注意机制的多尺寸神经网络,用于答案选择
阅读量:614 次
发布时间:2019-03-12

本文共 759 字,大约阅读时间需要 2 分钟。

贴一下汇总贴:

论文链接:

一、摘要

语义匹配对于答案选择任务至关重要,该任务旨在从候选答案库中为给定问题选择正确答案。一种有用的方法是采用神经网络来生成句子表示,其方式是使成对句子中的信息可以相互影响表示的计算。在这项工作中,将一种有效的体系结构,具有注意力机制的多尺寸神经网络(AM-MSNN)引入了答案选择任务。由于与单层CNN和多层CNN相比,过滤器的大小各异,因此该架构可并行捕获更多级别的语言粒度。同时,它通过注意力机制扩展了句子的表示形式,从而为不同类型的问题提供了更多的信息。对答案选择的三个不同基准任务的实证研究表明,该模型在所有基准中均有效,并且优于竞争对手。实验结果表明:

(1)与单层/多层CNN相比,多尺寸神经网络(MSNN)是一种更有效的捕获不同粒度级别的抽象特征的方法;
(2)注意机制(AM)是一种获得更多信息表示的较好策略;
(3)AM-MSNN目前是用于答案选择任务的更好的体系结构。

二、结论

本文引入多尺度神经网络、注意机制及其组合来回答选择任务。在三个不同的基准数据集(Superceqa、WikiQA和TrecQA)上进行了实验,实验结果表明,它们都在很大程度上提高了性能。它们可以很容易地适用于各种领域的句子建模,如释义识别(PI)和文本蕴涵(TE)。论文的主要贡献有:

(1)将多层神经网络引入到答案选择任务中,通过比较单层神经网络、多层神经网络和多层神经网络,分析语言粒度对句子建模的影响;
(2)提出调幅以产生更多的信息表示;
(3)将人工神经网络和多尺度神经网络相结合,提高深度学习方法在答案选择任务中的性能。

在未来,我们计划探索AM-MSNN在其他任务上的性能。

三、model

分为带注意力机制和不带注意力机制两种~

AM-MSNN

在这里插入图片描述

MSNN

在这里插入图片描述

注意力机制架构

在这里插入图片描述

转载地址:http://ixgxz.baihongyu.com/

你可能感兴趣的文章
mysql 主键重复则覆盖_数据库主键不能重复
查看>>
Mysql 事务知识点与优化建议
查看>>
Mysql 优化 or
查看>>
mysql 优化器 key_mysql – 选择*和查询优化器
查看>>
MySQL 优化:Explain 执行计划详解
查看>>
Mysql 会导致锁表的语法
查看>>
mysql 使用sql文件恢复数据库
查看>>
mysql 修改默认字符集为utf8
查看>>
Mysql 共享锁
查看>>
MySQL 内核深度优化
查看>>
mysql 内连接、自然连接、外连接的区别
查看>>
mysql 写入慢优化
查看>>
mysql 分组统计SQL语句
查看>>
Mysql 分页
查看>>
Mysql 分页语句 Limit原理
查看>>
MySql 创建函数 Error Code : 1418
查看>>
MySQL 创建新用户及授予权限的完整流程
查看>>
mysql 创建表,不能包含关键字values 以及 表id自增问题
查看>>
mysql 删除日志文件详解
查看>>
mysql 判断表字段是否存在,然后修改
查看>>